A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia
نویسندگان
چکیده
Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge. Keywords—ANN, discharge, modeling, prediction, suspended sediment,
منابع مشابه
Investigation of Possibility of Suspended Sediment Prediction Using a Combination of Sediment Rating Curve and Artificial Neural Network Case Study: Ghatorchai River, Yazdakan Bridge
Estimation of sediment loads in rivers is one of the most important, difficult components of sediment transport studies and river engineering. Accessing new methods that can be effective in this background are more important. In this research, we have used the artificial neural network (ANN) to optimize the results of the sediment rating curve (SRC) to predict the suspended sediment loads. For ...
متن کاملApplying Artificial Neural Network Algorithms to Estimate Suspended Sediment Load (Case Study: Kasilian Catchment, Iran)
Estimate of sediment load is required in a wide spectrum of water resources engineering problems. The nonlinear nature of suspended sediment load series necessitates the utilization of nonlinear methods to simulate the suspended sediment load. In this study Artificial Neural Networks (ANNs) are employed to estimate daily suspended sediment load. Two different ANN algorithms, Multi Layer Perce...
متن کاملModeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...
متن کاملComprising the Empirical Equations of Runoff- Sediment Resulted from Sediment Rating Curves and Artificial Neural Network (Case Study: Ghadarkhosh Watershed, Ilam Province)
Being available the accurate data on carried sediment has accounted as an important factor for making decision about constructing of river structures and determining of dam life. To accomplish this object, a number methods have been proposed so that sediment rate curving as a hydrological method has been developed for doing it. Ignoring differences between season's values causes to lower the pr...
متن کاملEstimating river suspended sediment yield using MLP neural network in arid and semi-arid basins Case study: Bar River, Neyshaboor, Iran
Abstract Erosion and sedimentation are the most complicated problems in hydrodynamic which are very important in water-related projects of arid and semi-arid basins. For this reason, the presence of suitable methods for good estimation of suspended sediment load of rivers is very valuable. Solving hydrodynamic equations related to these phenomenons and access to a mathematical-conceptual mode...
متن کامل